added new render mode test, and added code for the esp to handle multiple pin shorts
This commit is contained in:
parent
57917505ed
commit
22a25532ba
7 changed files with 383 additions and 14 deletions
|
@ -8,7 +8,8 @@ const char* mqttServer = "10.1.13.173";
|
|||
const int mqttPort = 1883;
|
||||
const char* mqttTopic = "test";
|
||||
|
||||
const int gpioPin = 25; // GPIO pin to check for shorting
|
||||
const int gpioPins[] = {25, 26, 27, 14}; // GPIO pins to check for shorting
|
||||
const unsigned int numPins = sizeof(gpioPins) / sizeof(gpioPins[0]);
|
||||
const unsigned long debounceDelay = 50; // Debounce delay in milliseconds
|
||||
|
||||
WiFiClient wifiClient;
|
||||
|
@ -16,9 +17,7 @@ PubSubClient mqttClient(wifiClient);
|
|||
|
||||
TaskHandle_t mqttTaskHandle = NULL;
|
||||
|
||||
Bounce debouncer = Bounce();
|
||||
|
||||
volatile int pressCounter = 0;
|
||||
Bounce debouncers[numPins];
|
||||
|
||||
void setupWiFi() {
|
||||
WiFi.begin(ssid, password);
|
||||
|
@ -54,25 +53,30 @@ void mqttTask(void* parameter) {
|
|||
ulTaskNotifyTake(pdTRUE, portMAX_DELAY); // Wait for notification
|
||||
|
||||
if (mqttClient.connected()) {
|
||||
String message = "GPIO pin shorted! Count: " + String(pressCounter);
|
||||
mqttClient.publish(mqttTopic, message.c_str());
|
||||
Serial.println("Message sent to MQTT server");
|
||||
pressCounter++;
|
||||
for (unsigned int i = 0; i < numPins; i++) {
|
||||
if (debouncers[i].fell()) {
|
||||
String message = "Pin shorted: " + String(gpioPins[i]);
|
||||
mqttClient.publish(mqttTopic, message.c_str());
|
||||
Serial.println("Message sent to MQTT server");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void setup() {
|
||||
Serial.begin(115200);
|
||||
pinMode(gpioPin, INPUT_PULLUP);
|
||||
|
||||
debouncer.attach(gpioPin);
|
||||
debouncer.interval(debounceDelay);
|
||||
|
||||
setupWiFi();
|
||||
mqttClient.setServer(mqttServer, mqttPort);
|
||||
mqttClient.setCallback(callback);
|
||||
|
||||
for (unsigned int i = 0; i < numPins; i++) {
|
||||
pinMode(gpioPins[i], INPUT_PULLUP);
|
||||
debouncers[i].attach(gpioPins[i]);
|
||||
debouncers[i].interval(debounceDelay);
|
||||
}
|
||||
|
||||
xTaskCreatePinnedToCore(
|
||||
mqttTask, // Task function
|
||||
"mqttTask", // Task name
|
||||
|
@ -90,8 +94,19 @@ void loop() {
|
|||
}
|
||||
mqttClient.loop();
|
||||
|
||||
debouncer.update();
|
||||
if (debouncer.fell()) {
|
||||
for (unsigned int i = 0; i < numPins; i++) {
|
||||
debouncers[i].update();
|
||||
}
|
||||
|
||||
bool anyPinShorted = false;
|
||||
for (unsigned int i = 0; i < numPins; i++) {
|
||||
if (debouncers[i].fell()) {
|
||||
anyPinShorted = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (anyPinShorted) {
|
||||
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
|
||||
vTaskNotifyGiveFromISR(mqttTaskHandle, &xHigherPriorityTaskWoken);
|
||||
if (xHigherPriorityTaskWoken == pdTRUE) {
|
||||
|
|
BIN
faces/prootface3.png
Normal file
BIN
faces/prootface3.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 306 B |
BIN
faces/prootface4.png
Normal file
BIN
faces/prootface4.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 277 B |
132
minDistance.py
Normal file
132
minDistance.py
Normal file
|
@ -0,0 +1,132 @@
|
|||
import math
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
from scipy.optimize import linear_sum_assignment
|
||||
|
||||
|
||||
class Point2D:
|
||||
x = 0
|
||||
y = 0
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
||||
def round(self):
|
||||
self.x = round(self.x)
|
||||
self.y = round(self.y)
|
||||
return self
|
||||
|
||||
def distance(self, other):
|
||||
dx = self.x - other.x
|
||||
dy = self.y - other.y
|
||||
return math.sqrt(dx**2 + dy**2)
|
||||
|
||||
def interpolate(self, other, percentage):
|
||||
new_x = self.x + (other.x - self.x) * percentage
|
||||
new_y = self.y + (other.y - self.y) * percentage
|
||||
return Point2D(new_x, new_y)
|
||||
|
||||
def __eq__(self, other):
|
||||
return (self.x, self.y) == (other.x, other.y)
|
||||
|
||||
|
||||
def generate_point_array_from_image(image):
|
||||
image = image.convert("RGB") # Convert image to RGB color mode
|
||||
|
||||
width, height = image.size
|
||||
point_array = []
|
||||
|
||||
# Iterate over the pixels and generate Point2D instances
|
||||
for y in range(height):
|
||||
for x in range(width):
|
||||
pixel = image.getpixel((x, y))
|
||||
if pixel != (0, 0, 0): # Assuming white pixels
|
||||
point = Point2D(x, y)
|
||||
point_array.append(point)
|
||||
|
||||
return point_array
|
||||
|
||||
|
||||
def generate_image_from_point_array(points, width, height):
|
||||
# Create a new blank image
|
||||
image = Image.new("RGB", (width, height), "black")
|
||||
|
||||
# Set the pixels corresponding to the points as white
|
||||
pixels = image.load()
|
||||
for point in points:
|
||||
point = point.round()
|
||||
x = point.x
|
||||
y = point.y
|
||||
pixels[x, y] = (255, 255, 255)
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def pair_points(points1, points2):
|
||||
# Determine the size of the point arrays
|
||||
size1 = len(points1)
|
||||
size2 = len(points2)
|
||||
|
||||
# Create a cost matrix based on the distances between points
|
||||
cost_matrix = np.zeros((size1, size2))
|
||||
for i in range(size1):
|
||||
for j in range(size2):
|
||||
cost_matrix[i, j] = points1[i].distance(points2[j])
|
||||
|
||||
# Duplicate points in the smaller array to match the size of the larger array
|
||||
if size1 > size2:
|
||||
num_duplicates = size1 - size2
|
||||
duplicated_points = np.random.choice(points2, size=num_duplicates).tolist()
|
||||
points2 += duplicated_points
|
||||
elif size2 > size1:
|
||||
num_duplicates = size2 - size1
|
||||
duplicated_points = np.random.choice(points1, size=num_duplicates).tolist()
|
||||
points1 += duplicated_points
|
||||
|
||||
# Update the size of the point arrays
|
||||
size1 = len(points1)
|
||||
size2 = len(points2)
|
||||
|
||||
# Create a new cost matrix with the updated sizes
|
||||
cost_matrix = np.zeros((size1, size2))
|
||||
for i in range(size1):
|
||||
for j in range(size2):
|
||||
cost_matrix[i, j] = points1[i].distance(points2[j])
|
||||
|
||||
# Solve the assignment problem using the Hungarian algorithm
|
||||
row_ind, col_ind = linear_sum_assignment(cost_matrix)
|
||||
|
||||
# Create pairs of points based on the optimal assignment
|
||||
pairs = []
|
||||
for i, j in zip(row_ind, col_ind):
|
||||
pairs.append((points1[i], points2[j]))
|
||||
|
||||
return pairs
|
||||
|
||||
|
||||
def interpolate_point_pairs(pairs, percentage):
|
||||
interpolated_points = []
|
||||
for pair in pairs:
|
||||
point1, point2 = pair
|
||||
interpolated_point = point1.interpolate(point2, percentage)
|
||||
interpolated_points.append(interpolated_point)
|
||||
return interpolated_points
|
||||
|
||||
|
||||
Image1 = Image.open("CiscoTheProot/faces/prootface3.png")
|
||||
Image2 = Image.open("CiscoTheProot/faces/prootface4.png")
|
||||
|
||||
pixelArray1 = generate_point_array_from_image(Image1)
|
||||
pixelArray2 = generate_point_array_from_image(Image2)
|
||||
|
||||
pairs = pair_points(pixelArray1, pixelArray2)
|
||||
|
||||
|
||||
generate_image_from_point_array(interpolate_point_pairs(pairs, 0), 128, 32).show()
|
||||
generate_image_from_point_array(interpolate_point_pairs(pairs, .25), 128, 32).show()
|
||||
generate_image_from_point_array(interpolate_point_pairs(pairs, .5), 128, 32).show()
|
||||
generate_image_from_point_array(interpolate_point_pairs(pairs, .75), 128, 32).show()
|
||||
generate_image_from_point_array(interpolate_point_pairs(pairs, 1), 128, 32).show()
|
||||
|
||||
print(pairs)
|
222
rpi/antRender.py
Normal file
222
rpi/antRender.py
Normal file
|
@ -0,0 +1,222 @@
|
|||
from rgbmatrix import RGBMatrix, RGBMatrixOptions
|
||||
import paho.mqtt.client as mqtt
|
||||
import time
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
|
||||
# Configuration for the matrix
|
||||
options = RGBMatrixOptions()
|
||||
options.rows = 32
|
||||
options.cols = 64
|
||||
options.chain_length = 2
|
||||
options.parallel = 1
|
||||
options.hardware_mapping = 'regular' # If you have an Adafruit HAT: 'adafruit-hat'
|
||||
matrix = RGBMatrix(options=options)
|
||||
|
||||
|
||||
import math
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
from scipy.optimize import linear_sum_assignment
|
||||
|
||||
|
||||
class Point2D:
|
||||
x = 0
|
||||
y = 0
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
||||
def round(self):
|
||||
self.x = round(self.x)
|
||||
self.y = round(self.y)
|
||||
return self
|
||||
|
||||
def distance(self, other):
|
||||
dx = self.x - other.x
|
||||
dy = self.y - other.y
|
||||
return math.sqrt(dx**2 + dy**2)
|
||||
|
||||
def interpolate(self, other, percentage):
|
||||
new_x = self.x + (other.x - self.x) * percentage
|
||||
new_y = self.y + (other.y - self.y) * percentage
|
||||
return Point2D(new_x, new_y)
|
||||
|
||||
def __eq__(self, other):
|
||||
return (self.x, self.y) == (other.x, other.y)
|
||||
|
||||
|
||||
def generate_point_array_from_image(image):
|
||||
image = image.convert("RGB") # Convert image to RGB color mode
|
||||
|
||||
width, height = image.size
|
||||
point_array = []
|
||||
|
||||
# Iterate over the pixels and generate Point2D instances
|
||||
for y in range(height):
|
||||
for x in range(width):
|
||||
pixel = image.getpixel((x, y))
|
||||
if pixel != (0, 0, 0): # Assuming white pixels
|
||||
point = Point2D(x, y)
|
||||
point_array.append(point)
|
||||
|
||||
return point_array
|
||||
|
||||
|
||||
def generate_image_from_point_array(points, width, height):
|
||||
# Create a new blank image
|
||||
image = Image.new("RGB", (width, height), "black")
|
||||
|
||||
# Set the pixels corresponding to the points as white
|
||||
pixels = image.load()
|
||||
for point in points:
|
||||
point = point.round()
|
||||
x = point.x
|
||||
y = point.y
|
||||
pixels[x, y] = (255, 255, 255)
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def pair_points(points1, points2):
|
||||
# Determine the size of the point arrays
|
||||
size1 = len(points1)
|
||||
size2 = len(points2)
|
||||
|
||||
# Create a cost matrix based on the distances between points
|
||||
cost_matrix = np.zeros((size1, size2))
|
||||
for i in range(size1):
|
||||
for j in range(size2):
|
||||
cost_matrix[i, j] = points1[i].distance(points2[j])
|
||||
|
||||
# Duplicate points in the smaller array to match the size of the larger array
|
||||
if size1 > size2:
|
||||
num_duplicates = size1 - size2
|
||||
duplicated_points = np.random.choice(points2, size=num_duplicates).tolist()
|
||||
points2 += duplicated_points
|
||||
elif size2 > size1:
|
||||
num_duplicates = size2 - size1
|
||||
duplicated_points = np.random.choice(points1, size=num_duplicates).tolist()
|
||||
points1 += duplicated_points
|
||||
|
||||
# Update the size of the point arrays
|
||||
size1 = len(points1)
|
||||
size2 = len(points2)
|
||||
|
||||
# Create a new cost matrix with the updated sizes
|
||||
cost_matrix = np.zeros((size1, size2))
|
||||
for i in range(size1):
|
||||
for j in range(size2):
|
||||
cost_matrix[i, j] = points1[i].distance(points2[j])
|
||||
|
||||
# Solve the assignment problem using the Hungarian algorithm
|
||||
row_ind, col_ind = linear_sum_assignment(cost_matrix)
|
||||
|
||||
# Create pairs of points based on the optimal assignment
|
||||
pairs = []
|
||||
for i, j in zip(row_ind, col_ind):
|
||||
pairs.append((points1[i], points2[j]))
|
||||
|
||||
return pairs
|
||||
|
||||
|
||||
def interpolate_point_pairs(pairs, percentage):
|
||||
interpolated_points = []
|
||||
for pair in pairs:
|
||||
point1, point2 = pair
|
||||
interpolated_point = point1.interpolate(point2, percentage)
|
||||
interpolated_points.append(interpolated_point)
|
||||
return interpolated_points
|
||||
|
||||
|
||||
Image1 = Image.open("faces/prootface3.png")
|
||||
Image2 = Image.open("faces/prootface4.png")
|
||||
|
||||
pixelArray1 = generate_point_array_from_image(Image1)
|
||||
pixelArray2 = generate_point_array_from_image(Image2)
|
||||
|
||||
pairs = pair_points(pixelArray1, pixelArray2)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
DesiredBlinkState = 10
|
||||
currentBlinkState = 0
|
||||
|
||||
blinkFrameCanvases = []
|
||||
|
||||
offscreen_interpolated_canvasA = matrix.CreateFrameCanvas()
|
||||
offscreen_interpolated_canvasA.brightness = 50
|
||||
offscreen_interpolated_canvasA.SetImage(generate_image_from_point_array(interpolate_point_pairs(pairs, 0), 128, 32), unsafe=False)
|
||||
blinkFrameCanvases.append(offscreen_interpolated_canvasA)
|
||||
|
||||
for alpha in range(1,10):
|
||||
offscreen_interpolated_canvas = matrix.CreateFrameCanvas()
|
||||
interpolated_image = generate_image_from_point_array(interpolate_point_pairs(pairs, alpha), 128, 32)
|
||||
offscreen_interpolated_canvas.SetImage(interpolated_image, unsafe=False)
|
||||
blinkFrameCanvases.append(offscreen_interpolated_canvas)
|
||||
|
||||
offscreen_interpolated_canvasB = matrix.CreateFrameCanvas()
|
||||
offscreen_interpolated_canvasB.SetImage(generate_image_from_point_array(interpolate_point_pairs(pairs, 1), 128, 32), unsafe=False)
|
||||
blinkFrameCanvases.append(offscreen_interpolated_canvasB)
|
||||
|
||||
|
||||
|
||||
def update_screen():
|
||||
global DesiredBlinkState, currentBlinkState, blinkFrameCanvases, matrix, offscreen_interpolated_canvasA
|
||||
|
||||
# open eye again after blink
|
||||
if currentBlinkState == 10:
|
||||
DesiredBlinkState = 0
|
||||
|
||||
if currentBlinkState == DesiredBlinkState:
|
||||
next_canvas = blinkFrameCanvases[currentBlinkState]
|
||||
return
|
||||
|
||||
|
||||
next_canvas = blinkFrameCanvases[currentBlinkState]
|
||||
|
||||
if currentBlinkState < DesiredBlinkState:
|
||||
currentBlinkState += 1
|
||||
else:
|
||||
currentBlinkState -= 1
|
||||
|
||||
next_canvas = matrix.SwapOnVSync(next_canvas)
|
||||
|
||||
|
||||
|
||||
|
||||
# functions called by the MQTT listener
|
||||
def on_connect(client, userdata, flags, response_code):
|
||||
print("Connected to MQTT broker with result code " + str(response_code))
|
||||
client.subscribe("test")
|
||||
|
||||
|
||||
def on_message(client, userdata, message):
|
||||
print("Received message '" + str(message.payload) + "' on topic '"
|
||||
+ message.topic + "' with QoS " + str(message.qos))
|
||||
global DesiredBlinkState
|
||||
DesiredBlinkState = 10
|
||||
|
||||
# MQTT broker configuration
|
||||
broker_address = "10.1.13.173" # Replace with your MQTT broker's address
|
||||
broker_port = 1883
|
||||
broker_keepalive = 60
|
||||
|
||||
client = mqtt.Client()
|
||||
client.on_connect = on_connect
|
||||
client.on_message = on_message
|
||||
|
||||
client.connect(broker_address, broker_port, broker_keepalive)
|
||||
|
||||
client.loop_start()
|
||||
|
||||
|
||||
while True:
|
||||
time.sleep(0.05)
|
||||
update_screen()
|
||||
|
BIN
testImg1.png
Normal file
BIN
testImg1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 128 B |
BIN
testImg2.png
Normal file
BIN
testImg2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 131 B |
Loading…
Reference in a new issue