added new render mode test, and added code for the esp to handle multiple pin shorts

This commit is contained in:
CiscoTheWolf 2023-05-22 21:41:27 +02:00
parent 57917505ed
commit 22a25532ba
7 changed files with 383 additions and 14 deletions

View file

@ -8,7 +8,8 @@ const char* mqttServer = "10.1.13.173";
const int mqttPort = 1883;
const char* mqttTopic = "test";
const int gpioPin = 25; // GPIO pin to check for shorting
const int gpioPins[] = {25, 26, 27, 14}; // GPIO pins to check for shorting
const unsigned int numPins = sizeof(gpioPins) / sizeof(gpioPins[0]);
const unsigned long debounceDelay = 50; // Debounce delay in milliseconds
WiFiClient wifiClient;
@ -16,9 +17,7 @@ PubSubClient mqttClient(wifiClient);
TaskHandle_t mqttTaskHandle = NULL;
Bounce debouncer = Bounce();
volatile int pressCounter = 0;
Bounce debouncers[numPins];
void setupWiFi() {
WiFi.begin(ssid, password);
@ -54,25 +53,30 @@ void mqttTask(void* parameter) {
ulTaskNotifyTake(pdTRUE, portMAX_DELAY); // Wait for notification
if (mqttClient.connected()) {
String message = "GPIO pin shorted! Count: " + String(pressCounter);
mqttClient.publish(mqttTopic, message.c_str());
Serial.println("Message sent to MQTT server");
pressCounter++;
for (unsigned int i = 0; i < numPins; i++) {
if (debouncers[i].fell()) {
String message = "Pin shorted: " + String(gpioPins[i]);
mqttClient.publish(mqttTopic, message.c_str());
Serial.println("Message sent to MQTT server");
}
}
}
}
}
void setup() {
Serial.begin(115200);
pinMode(gpioPin, INPUT_PULLUP);
debouncer.attach(gpioPin);
debouncer.interval(debounceDelay);
setupWiFi();
mqttClient.setServer(mqttServer, mqttPort);
mqttClient.setCallback(callback);
for (unsigned int i = 0; i < numPins; i++) {
pinMode(gpioPins[i], INPUT_PULLUP);
debouncers[i].attach(gpioPins[i]);
debouncers[i].interval(debounceDelay);
}
xTaskCreatePinnedToCore(
mqttTask, // Task function
"mqttTask", // Task name
@ -90,8 +94,19 @@ void loop() {
}
mqttClient.loop();
debouncer.update();
if (debouncer.fell()) {
for (unsigned int i = 0; i < numPins; i++) {
debouncers[i].update();
}
bool anyPinShorted = false;
for (unsigned int i = 0; i < numPins; i++) {
if (debouncers[i].fell()) {
anyPinShorted = true;
break;
}
}
if (anyPinShorted) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
vTaskNotifyGiveFromISR(mqttTaskHandle, &xHigherPriorityTaskWoken);
if (xHigherPriorityTaskWoken == pdTRUE) {

BIN
faces/prootface3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 306 B

BIN
faces/prootface4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 277 B

132
minDistance.py Normal file
View file

@ -0,0 +1,132 @@
import math
from PIL import Image
import numpy as np
from scipy.optimize import linear_sum_assignment
class Point2D:
x = 0
y = 0
def __init__(self, x, y):
self.x = x
self.y = y
def round(self):
self.x = round(self.x)
self.y = round(self.y)
return self
def distance(self, other):
dx = self.x - other.x
dy = self.y - other.y
return math.sqrt(dx**2 + dy**2)
def interpolate(self, other, percentage):
new_x = self.x + (other.x - self.x) * percentage
new_y = self.y + (other.y - self.y) * percentage
return Point2D(new_x, new_y)
def __eq__(self, other):
return (self.x, self.y) == (other.x, other.y)
def generate_point_array_from_image(image):
image = image.convert("RGB") # Convert image to RGB color mode
width, height = image.size
point_array = []
# Iterate over the pixels and generate Point2D instances
for y in range(height):
for x in range(width):
pixel = image.getpixel((x, y))
if pixel != (0, 0, 0): # Assuming white pixels
point = Point2D(x, y)
point_array.append(point)
return point_array
def generate_image_from_point_array(points, width, height):
# Create a new blank image
image = Image.new("RGB", (width, height), "black")
# Set the pixels corresponding to the points as white
pixels = image.load()
for point in points:
point = point.round()
x = point.x
y = point.y
pixels[x, y] = (255, 255, 255)
return image
def pair_points(points1, points2):
# Determine the size of the point arrays
size1 = len(points1)
size2 = len(points2)
# Create a cost matrix based on the distances between points
cost_matrix = np.zeros((size1, size2))
for i in range(size1):
for j in range(size2):
cost_matrix[i, j] = points1[i].distance(points2[j])
# Duplicate points in the smaller array to match the size of the larger array
if size1 > size2:
num_duplicates = size1 - size2
duplicated_points = np.random.choice(points2, size=num_duplicates).tolist()
points2 += duplicated_points
elif size2 > size1:
num_duplicates = size2 - size1
duplicated_points = np.random.choice(points1, size=num_duplicates).tolist()
points1 += duplicated_points
# Update the size of the point arrays
size1 = len(points1)
size2 = len(points2)
# Create a new cost matrix with the updated sizes
cost_matrix = np.zeros((size1, size2))
for i in range(size1):
for j in range(size2):
cost_matrix[i, j] = points1[i].distance(points2[j])
# Solve the assignment problem using the Hungarian algorithm
row_ind, col_ind = linear_sum_assignment(cost_matrix)
# Create pairs of points based on the optimal assignment
pairs = []
for i, j in zip(row_ind, col_ind):
pairs.append((points1[i], points2[j]))
return pairs
def interpolate_point_pairs(pairs, percentage):
interpolated_points = []
for pair in pairs:
point1, point2 = pair
interpolated_point = point1.interpolate(point2, percentage)
interpolated_points.append(interpolated_point)
return interpolated_points
Image1 = Image.open("CiscoTheProot/faces/prootface3.png")
Image2 = Image.open("CiscoTheProot/faces/prootface4.png")
pixelArray1 = generate_point_array_from_image(Image1)
pixelArray2 = generate_point_array_from_image(Image2)
pairs = pair_points(pixelArray1, pixelArray2)
generate_image_from_point_array(interpolate_point_pairs(pairs, 0), 128, 32).show()
generate_image_from_point_array(interpolate_point_pairs(pairs, .25), 128, 32).show()
generate_image_from_point_array(interpolate_point_pairs(pairs, .5), 128, 32).show()
generate_image_from_point_array(interpolate_point_pairs(pairs, .75), 128, 32).show()
generate_image_from_point_array(interpolate_point_pairs(pairs, 1), 128, 32).show()
print(pairs)

222
rpi/antRender.py Normal file
View file

@ -0,0 +1,222 @@
from rgbmatrix import RGBMatrix, RGBMatrixOptions
import paho.mqtt.client as mqtt
import time
from PIL import Image
import numpy as np
# Configuration for the matrix
options = RGBMatrixOptions()
options.rows = 32
options.cols = 64
options.chain_length = 2
options.parallel = 1
options.hardware_mapping = 'regular' # If you have an Adafruit HAT: 'adafruit-hat'
matrix = RGBMatrix(options=options)
import math
from PIL import Image
import numpy as np
from scipy.optimize import linear_sum_assignment
class Point2D:
x = 0
y = 0
def __init__(self, x, y):
self.x = x
self.y = y
def round(self):
self.x = round(self.x)
self.y = round(self.y)
return self
def distance(self, other):
dx = self.x - other.x
dy = self.y - other.y
return math.sqrt(dx**2 + dy**2)
def interpolate(self, other, percentage):
new_x = self.x + (other.x - self.x) * percentage
new_y = self.y + (other.y - self.y) * percentage
return Point2D(new_x, new_y)
def __eq__(self, other):
return (self.x, self.y) == (other.x, other.y)
def generate_point_array_from_image(image):
image = image.convert("RGB") # Convert image to RGB color mode
width, height = image.size
point_array = []
# Iterate over the pixels and generate Point2D instances
for y in range(height):
for x in range(width):
pixel = image.getpixel((x, y))
if pixel != (0, 0, 0): # Assuming white pixels
point = Point2D(x, y)
point_array.append(point)
return point_array
def generate_image_from_point_array(points, width, height):
# Create a new blank image
image = Image.new("RGB", (width, height), "black")
# Set the pixels corresponding to the points as white
pixels = image.load()
for point in points:
point = point.round()
x = point.x
y = point.y
pixels[x, y] = (255, 255, 255)
return image
def pair_points(points1, points2):
# Determine the size of the point arrays
size1 = len(points1)
size2 = len(points2)
# Create a cost matrix based on the distances between points
cost_matrix = np.zeros((size1, size2))
for i in range(size1):
for j in range(size2):
cost_matrix[i, j] = points1[i].distance(points2[j])
# Duplicate points in the smaller array to match the size of the larger array
if size1 > size2:
num_duplicates = size1 - size2
duplicated_points = np.random.choice(points2, size=num_duplicates).tolist()
points2 += duplicated_points
elif size2 > size1:
num_duplicates = size2 - size1
duplicated_points = np.random.choice(points1, size=num_duplicates).tolist()
points1 += duplicated_points
# Update the size of the point arrays
size1 = len(points1)
size2 = len(points2)
# Create a new cost matrix with the updated sizes
cost_matrix = np.zeros((size1, size2))
for i in range(size1):
for j in range(size2):
cost_matrix[i, j] = points1[i].distance(points2[j])
# Solve the assignment problem using the Hungarian algorithm
row_ind, col_ind = linear_sum_assignment(cost_matrix)
# Create pairs of points based on the optimal assignment
pairs = []
for i, j in zip(row_ind, col_ind):
pairs.append((points1[i], points2[j]))
return pairs
def interpolate_point_pairs(pairs, percentage):
interpolated_points = []
for pair in pairs:
point1, point2 = pair
interpolated_point = point1.interpolate(point2, percentage)
interpolated_points.append(interpolated_point)
return interpolated_points
Image1 = Image.open("faces/prootface3.png")
Image2 = Image.open("faces/prootface4.png")
pixelArray1 = generate_point_array_from_image(Image1)
pixelArray2 = generate_point_array_from_image(Image2)
pairs = pair_points(pixelArray1, pixelArray2)
DesiredBlinkState = 10
currentBlinkState = 0
blinkFrameCanvases = []
offscreen_interpolated_canvasA = matrix.CreateFrameCanvas()
offscreen_interpolated_canvasA.brightness = 50
offscreen_interpolated_canvasA.SetImage(generate_image_from_point_array(interpolate_point_pairs(pairs, 0), 128, 32), unsafe=False)
blinkFrameCanvases.append(offscreen_interpolated_canvasA)
for alpha in range(1,10):
offscreen_interpolated_canvas = matrix.CreateFrameCanvas()
interpolated_image = generate_image_from_point_array(interpolate_point_pairs(pairs, alpha), 128, 32)
offscreen_interpolated_canvas.SetImage(interpolated_image, unsafe=False)
blinkFrameCanvases.append(offscreen_interpolated_canvas)
offscreen_interpolated_canvasB = matrix.CreateFrameCanvas()
offscreen_interpolated_canvasB.SetImage(generate_image_from_point_array(interpolate_point_pairs(pairs, 1), 128, 32), unsafe=False)
blinkFrameCanvases.append(offscreen_interpolated_canvasB)
def update_screen():
global DesiredBlinkState, currentBlinkState, blinkFrameCanvases, matrix, offscreen_interpolated_canvasA
# open eye again after blink
if currentBlinkState == 10:
DesiredBlinkState = 0
if currentBlinkState == DesiredBlinkState:
next_canvas = blinkFrameCanvases[currentBlinkState]
return
next_canvas = blinkFrameCanvases[currentBlinkState]
if currentBlinkState < DesiredBlinkState:
currentBlinkState += 1
else:
currentBlinkState -= 1
next_canvas = matrix.SwapOnVSync(next_canvas)
# functions called by the MQTT listener
def on_connect(client, userdata, flags, response_code):
print("Connected to MQTT broker with result code " + str(response_code))
client.subscribe("test")
def on_message(client, userdata, message):
print("Received message '" + str(message.payload) + "' on topic '"
+ message.topic + "' with QoS " + str(message.qos))
global DesiredBlinkState
DesiredBlinkState = 10
# MQTT broker configuration
broker_address = "10.1.13.173" # Replace with your MQTT broker's address
broker_port = 1883
broker_keepalive = 60
client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message
client.connect(broker_address, broker_port, broker_keepalive)
client.loop_start()
while True:
time.sleep(0.05)
update_screen()

BIN
testImg1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 128 B

BIN
testImg2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 131 B